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Abstract

We develop in this article an improved version of the fifth-order weighted essentially non-oscillatory
(WENO) scheme. Through the novel use of higher order information already present in the framework
of the classical scheme, new smoothness indicators are devised and we obtain a new WENO scheme
with less dissipation than the classical WENO of Jiang and Shu [2], with the same computational cost,
and a slightly better performance than the improved mapped version of Henrick et al [3]. We show
that the enhancements of the new scheme come from its ability to assign substantially larger weights
to discontinuous stencils than the previous versions of WENO. Numerical experiments with the linear
advection of discontinuous functions and the one dimensional Euler system of equations are conducted to
demonstrate the benefit of using this improved version of the WENO scheme for hyperbolic conservation
laws.
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1 Introduction

In the numerical simulation of compressible flows modeled by means of hyperbolic conservation laws in the
form

∂u

∂t
+ ∇ · F (u) = 0, (1)

the development of finite time discontinuities generates O(1) oscillations, known as the Gibbs phenomenon,
causing loss of accuracy and numerical instability. Among many choices of shock capturing numerical
schemes such as the Piecewise Parabolic method (PPM) [7], the Essentially Non-Oscillatory scheme (ENO)
[6], high order Weighted Essentially Non-Oscillatory schemes (WENO) [1, 2] have been extensively used for
the simulation of the fine scale and delicate structures of the physical phenomena related to shock-turbulence
interactions.

WENO schemes owe their success to the use of a dynamic set of stencils, where a nonlinear convex
combination of lower order polynomials adapts either to a higher order approximation at smooth parts
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of the solution, or to an upwind spatial discretization that avoids interpolation across discontinuities and
provides the necessary dissipation for shock capturing. The nonlinear coefficients of the convex combination,
hereafter referred to as weights, are based on the local smoothness indicators, which measure the sum of the
normalized squares of the scaled L2 norms of all derivatives of the lower order polynomials [2]. An essentially
zero weight is assigned to those lower order polynomials whose underlining stencils contain high gradients
and/or shocks, yielding an essentially non-oscillatory solution at discontinuities. At smooth regions, higher
order is achieved through the mimicking of the central upwinding scheme of maximum order, when all
smoothness indicators are about the same size. Hence, an efficient design of these smoothness indicators is
a very important issue for WENO schemes.

The classical choice of smoothness indicators in [2] generated weights that failed to recover the maximum
order of the scheme at critical points of the solution. This fact was clearly pointed out at Henrick et al.
[3]. In their study, necessary and sufficient conditions on the weights, for optimality of the order, were
derived and a correcting mapping to be applied to the classical weights was devised. The resulting mapped
WENO scheme of [3] recovered the optimal order of convergence at critical points and presented sharper
results close to discontinuities. In this article, we follow a different approach, which is to improve on the
classical smoothness indicators to obtain weights that satisfies the sufficient conditions for optimal order.
Taylor series analysis of the classical smoothness indicators reveals that a simple combination of them would
give higher order information about the regularity of the numerical solution. The incorporation of this
new higher order information into the weights definition improves the convergence order at smooth parts
of the solution, as well as decreases dissipation close to discontinuities, while maintaining stability and an
essentially non-oscillatory behavior.

The enhancements of the new scheme come from the bigger weights that it assigns to discontinuous
stencils. Contrary to common belief, the strategy should be to augment the influence of the stencil containing
the discontinuity as much as possible, without destroying the essentially non-oscillatory behavior. A com-
parison of the weights of the classical, the mapped and the new WENO scheme close to a discontinuity shows
that the ratio between the weight of a discontinuous stencil and a continuous one increases slightly from the
classical weights to the mapped weights, and increases substantially with the new weights proposed in this
article. This was made possible through the use of higher order smoothness indicators already available at
the definition of the classical weights.

This paper is organized as follows: In Section 2, the classical WENO scheme of Jiang and Shu [2] and
the mapped weights version of Henrick et al. [3] are described and some of the relevant analytical results
are reviewed. The new WENO scheme is introduced at Section 3 where a detailed discussion about the new
smoothness indicators is given. In Section 4, we perform a numerical comparison of all the schemes in the
linear advection of discontinuous functions and in the solution of the one dimensional Euler equations in the
classical cases of the shock density wave interaction and the interactive blastwaves problems.

2 Weighted essentially non-oscillatory schemes

In this section we describe the fifth order weighted essentially non-oscillatory conservative finite difference
scheme when applied to hyperbolic conservation laws as in (1). Without loss of generality, we will restrict
our discussion in this article to the one dimensional scalar case. Extensions to system of equations and
higher spatial dimensions present no extra complexity with regards to our main point which is the design of
new smoothness indicators for the WENO scheme.

Consider an uniform grid defined by the points xi = i∆x, i = 0, . . . , N , which are also called cell centers,
with cell boundaries given by xi+ 1

2
= xi + ∆x

2 . The semi-discretized form of (1) by the method of lines,
yields a system of ordinary differential equations

dui(t)

dt
= −

∂f

∂x

∣

∣

∣

∣

x=xi

, i = 0, . . . , N, (2)

where ui(t) is a numerical approximation to the point value u(xi, t).
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Figure 1: The computational uniform grid xi and the total 5-points stencil S5, composed of the three 3-points
stencils Sk, k = 0, 1, 2, used for the fifth order WENO reconstruction.

A conservative finite-difference formulation for hyperbolic conservation laws requires high-order consis-
tent numerical fluxes at the cell boundaries in order to form the flux difference across the uniformly-spaced
cells. The conservative property of the spatial discretization is obtained by implicitly defining the numerical
flux function h(x) as

f(x) =
1

∆x

∫ x+∆x

2

x−∆x

2

h(ξ)dξ,

such that the spatial derivative in (2) is exactly approximated by a conservative finite difference formula at
the cell boundaries,

dui(t)

dt
=

1

∆x

(

hi+ 1
2
− hi− 1

2

)

, (3)

where hi± 1
2

= h(x ± ∆x
2 ).

High order polynomial interpolations to hi± 1
2

are computed using known grid values of f . The classical

fifth-order WENO scheme uses a 5-points stencil, hereafter named S5, which is subdivided into three other
3-points stencils S0, S1, S2, as shown in Fig. 1. The fifth-order polynomial approximation v̂i+ 1

2
= hi+ 1

2
+

O(∆x5) is built through the convex combination of interpolated values f̂k

(

xi+ 1
2

)

, at xi+ 1
2
, by the third-

degree polynomials f̂k, defined in each one of the stencils Sk:

v̂i+ 1
2

=

2
∑

k=0

ωkf̂k

(

xi+ 1
2

)

, (4)

where

f̂k

(

xi+ 1
2

)

=

2
∑

j=0

ckjfi−k+j = h
(

xi+ 1
2

)

+ O(∆x3). (5)

The ckj are Lagrangian interpolation coefficients (see [2]), which depend on the left-shift parameter k = 0, 1, 2,
but not on the values fi. The weights ωk are defined as

ωk =
αk

∑2
l=0 αl

, αk =
dk

(βk + ε)p
. (6)
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We refer to αk as the unnormalized weights. The parameter ε is used to avoid the division by zero in the
denominator and p = 2 is chosen to increase the difference of scales of distinct weights at non-smooth parts
of the solution.

The smoothness indicators βk measure the regularity of the k th polynomial approximation f̂k(x) at
the Stencil Sk and are given by

βk =

2
∑

l=1

∆x2l−1

∫ x
i+1

2

x
i−

1
2

(

dl

dxl
f̂k(x)

)2

dx. (7)

The expression of the βk in terms of the cell values of f are given by

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2
, (8)

β1 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − fi+1)

2
, (9)

β2 =
13

12
(fi − 2fi+1 + fi+2)

2
+

1

4
(3fi − 4fi+1 + fi+2)

2
. (10)

The coefficients d0 = 3
10 , d1 = 3

5 , d2 = 1
10 in (6) are called the ideal weights for the convex combination

(4) since they generate the central upstream fifth-order scheme for the 5-points stencil S5. The general idea
of the weights definition (6) is that on smooth parts of the solution the smoothness indicators βk are all
small and about the same size, generating weigths ωk that are good approximations to the ideal weights
dk. On the other hand, if the stencil Sk contains a discontinuity, βk is O(1) and the corresponding weight
ωk is small relatively to the other weights. This implies that the influence of the polynomial approximation
of hi± 1

2
taken across the discontinuity is diminished up to the point where the convex combination (4) is

essentially non-oscillatory. Figure 1 shows the case where stencil S2 is discontinuous, yielding β0 and β1 to
be much smaller than β2. By (6), this results on ω2 being a small number in the convex combination (4)
(See also Fig. 3(a) of Section 3).

The process described above is called the WENO reconstruction step, for it reconstructs the values of
h(x) at the cell boundaries of the interval Ii = [xi− 1

2
, xi+ 1

2
] from its cell averaged values f(x) in the intervals

Sk, k = 0, 1, 2. In [3], truncation error analysis of the finite difference equation (3) led to sufficient conditions
on the weights ωk for the WENO scheme to achieve the formal fifth-order of convergence at smooth parts of
the solution. It was found that at critical points, points where the first derivative of the solution vanishes,
convergence degraded to only third order, a fact that was being hidden by the uniformization of the weights
caused by the use of a large value for ε in (6). Since this analysis is relevant to the description of the new
WENO scheme introduced at next section, we recall below its most important steps.

Substituting the convex combination (4) into the finite difference formula (3) we obtain:

v̂i+ 1
2
− v̂i− 1

2
=

2
∑

k=0

ω+
k v̂i+ 1

2
−

2
∑

k=0

ω−

k v̂i− 1
2

=

(

2
∑

k=0

dkv̂i+ 1
2
−

2
∑

k=0

dkv̂i− 1
2

)

+

2
∑

k=0

(ω+
k − dk)v̂i+ 1

2
−

2
∑

k=0

(ω−

k − dk)v̂i− 1
2

=
(

v̂c
i+ 1

2

− v̂c
i− 1

2

)

+
2
∑

k=0

(ω+
k − dk)

[

hi+ 1
2

+ Ak∆x3
]

−
2
∑

k=0

(ω−

k − dk)
[

hi− 1
2

+ Bk∆x3
]

= v′(xi)∆x + O(∆x6) +
2
∑

k=0

(ω+
k − dk)Ak∆x3 −

2
∑

k=0

(ω−

k − dk)Bk∆x3.

Hence, the trunction error becomes

1

∆x

(

v̂i+ 1
2
− v̂i− 1

2

)

= v′(xi) + O(∆x5) +
2
∑

k=0

(ω+
k − dk)Ak∆x2 −

2
∑

k=0

(ω−

k − dk)Bk∆x2, (11)
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where v̂c
i± 1

2

are the fifth-order central upstream approximations to hi± 1
2

and ω+
k and ω−

k are the WENO

weights at xi+ 1
2

and xi− 1
2
, respectively, Ak and Bk are constants independent of ∆x. It should be pointed

out that due to normalization
2
∑

k=0

ω±

k =
2
∑

k=0

dk and that O(∆x5) is still obtained after the division by ∆x in

the difference of the central approximations v̂c
i± 1

2

, because of cancellation of identical O(∆x5) terms. Thus,

a sufficient condition on the weights (6) to get a fifth-order truncation error at (3) is given by

ω±

k = dk + O(∆x3), k = 0, 1, 2. (12)

Considering, for simplicity, that ε = 0, it is easily seen from (6) that if the smoothness indicators satisfy
βk = D(1 + O(∆x3)), for a constant D independent of k, then the unnormalized weights also satisfy αk =
D(1 + O(∆x3)) and ωk = dk + O(∆x3) (see [3]).

It is easily seen that for the classical scheme, and a sufficiently smooth solution,

βk = D(1 + O(∆x2)) and ωk = dk + O(∆x2), (13)

which does not satisfy (12), yielding convergence order less than 5. In [3], the weights ωk were modified
by a mapping function that increased the approximation to the ideal weights dk to the required third order
O(∆x3). The mapping function gk(ω) was defined as

gk(ω) =
ω
(

dk + d2
k − 3dkω + ω2

)

d2
k + ω (1 − 2dk)

. (14)

It is a nondecreasing monotone function with the following properties:

• 0 ≤ gk(ω) ≤ 1, gk(0) = 0 and gk(1) = 1.

• gk(ω) ≈ 0 if ω ≈ 0; gk(ω) ≈ 1 if ω ≈ 1.

• gk(dk) = dk, g′k(dk) = g′′k (dk) = 0.

• gk(ω) = dk + O(∆x3r), if ω = dk + O(∆xr).

At critical points of the solution, the order of the classical scheme decreases more since we only obtain
βk = D(1 + O(∆x)), if f ′′ 6= 0, and βk = D(1 + O(1)), if f ′′ = 0 (see Equations (15)-(17) below). Thus,
the mapping does improve the order of the classical scheme at the critical points of first order, but it cannot
help when too many derivatives vanish.

For problems with shocks, the O(1) truncation error at the discontinuities diminishes the advantages of
such order improvements. Nevertheless, the results obtained by the mapped scheme are clearly superior to
the classical scheme results. Distinctly from [3], we do not credit the enhancements of the numerical solution
to the higher order of the mapped scheme at critical points, but to the smaller dissipation that it provides
when assigning larger weights to discontinuous stencils, as we shall see in the next section. We will also see
that the new smoothness indicators proposed in this work yield even larger weights than the mapped WENO
to stencils with discontinuities, generating even better solutions.

3 An Improved WENO Scheme

In this section we devise a new set of weights that satisfies the sufficient condition (12) and recovers the
formal order of accuracy at the smooth regions of the solution. The novel idea is the use of higher order
smoothness indicators at the formula for the weights of the convex combination (4). In order to define the
new smoothness indicators of higher order, we need the following Taylor series expansions for the smoothness
indicators βk of (7):
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β0 = v′2∆x2 +

(

13

12
v′′2 −

2

3
v′v′′′

)

∆x4 −

(

13

6
v′′v′′′ −

1

2
v′v′′′′

)

∆x5 + O(∆x6), (15)

β1 = v′2∆x2 +

(

13

12
v′′2 +

1

3
v′v′′′

)

∆x4 + O(∆x6), (16)

β2 = v′2∆x2 +

(

13

12
v′′2 −

2

3
v′v′′′

)

∆x4 +

(

13

6
v′′v′′′ −

1

2
v′v′′′′

)

∆x5 + O(∆x6). (17)

The higher order new smoothness indicator τ5 is defined as the difference between β0 and β2, namely

τ5 = max (|β0 − β2| , ε) , (18)

where ε is a small number used to ensure that τ5 6= 0. We see from (10) and from equations (15)-(17) that
τ5 is a measure of the higher derivatives of the function, when they exist, and is computed using the whole
5-points stencil S5. The following properties of τ5 are important for the definition of the new WENO scheme:

• If S5 contains neither discontinuities, nor critical points, then τ5 = O(∆x5) � βk, for k = 0, 1, 2;

• if the solution is continuous at some of the Sk, but discontinuous in the whole S5, then βk � τ5, for
those k where the solution is continuous;

• τ5 ≤ maxk βk.

Figure 2 shows the values of βk and τ5 for the discontinuous function:

u(x, 0) = f(x) =

{

− sin(πx) − 1
2x3 −1 < x < 0

− sin(πx) − 1
2x3 + 1 0 ≤ x ≤ 1

. (19)

consisting of a piecewise sine function with a jump discontinuity at x = 0. Note that τ5 is only comparable
to one of the βk at stencils that include the discontinuity.

x
-1 -0.5 0 0.5 1

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

τ
5

β
2

β
1

β
0

x
-0.03 -0.02 -0.01 0 0.01 0.02

10-4

10-3

10-2

10-1

100

Figure 2: Values of βk and τ5 for the discontinuous periodic function (19).

The following notation will be used in order to distinguish between the 3 different WENO schemes
considered in this work. The mapped weights of [3] are denoted as ωM

k and the resulting mapped WENO
scheme as WENO-M. The new WENO scheme, introduced below, is referred as WENO-Z and the superscript
z is added to all quantities related to it. To keep a coherent notation throughout the article, the classical
weights and smoothness indicators carry no superscript, although, the classical WENO scheme of [2] is
referred as WENO-JS.
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The new smoothness indicators βZ

k are defined as

βZ

k =
βk + ε

βk + τ5
, (20)

and the new weights ωZ

k as

ωZ

k =
αZ

k
∑2

l=0 αZ

l

, αZ

k =
dk

βZ

k

, k = 0, 1, 2. (21)

Rigorously speaking, βZ

k are not smoothness indicators, for they are all close to 1 at smooth parts of the
solution. They are in fact the normalization of the classical smoothness indicators by higher order information
contained in the larger stencil S5.

Remark 1 Note that p = 1 in the definition of the unnormalized weights αZ

k . Numerical experiments showed
that the use of p = 2, as in the definition of the classical unnormalized weights αk, led to an unstable scheme,
for it amplified too much the ratio (24). This is the opposite way that was taken in the definition of the
classical weights where p = 2 was used to increase the distance between a continuous and a discontinuous
stencil and, therefore, decrease the importance of this last one at the final convex combination.

Remark 2 The role of ε was discussed in [3], where it was shown that the large value of 10−6, commonly
suggested in the literature, would dominate over the smoothness indicators βk at the denominators of the
definition of the classical weights. Due to (13), a smaller value for ε degrades the order of the classical
scheme, particularly at critical points. In this work, we use much smaller values of ε for all schemes, in
order to make apparent their real truncation errors. In other words, the parameter it is reduced to play only
its original role of not allowing vanishing denominators at the weights definitions.

In the following, we show that ωZ

k = dk + O(∆x3) at smooth parts of the solution and that bigger
weights are assigned to discontinuous stencils with the new scheme WENO-Z. We take ε = 0 at the analyses
below due to the reasons given in Remark 2.

We now compute the order of approximation of the weights in (21) to the ideal weights dk. For the sake
of clarity, we will not consider the case of critical points initially. Thus, at smooth regions of the solution,
not containing critical points, we see from Equations (15)-(17) that βk ≈ O(∆x2), yielding

βZ

k =
(

1 + τ5β
−1
k

)−1
= 1 + O

(

∆x3
)

, k = 0, 1, 2. (22)

It follows that

ωZ

k =
dk

(

1 + τ5β
−1
k

)

∑2
j=0 dj

(

1 + τ5β
−1
l

) =
dk

(

1 + O(∆x3)
)

∑2
j=0 dl

(

1 + O(∆x3)
) = dk + O(∆x3), k = 0, 1, 2. (23)

Thus, the new weights ωZ

k satisfy the sufficient condition (12), providing the formal fifth order of accuracy
to the WENO-Z scheme at the smooth regions of the solution.

Next, we examine the behavior of ωZ

k on stencils containing discontinuities with respect to the classical
weights. The analysis can be performed by looking at the behavior of the smoothness indicators βZ

k . Consider
the simple case of a shock localized in stencil S2, while the solution in stencils S0 and S1 are smooth (see Fig.
1), the ratios between the smaller smoothness indicators βk, k = 0, 1 and the largest one, β2, are increased
with for the new smoothness indicators βZ

k :

βZ

k

βZ

2

=
βk

β2

β2 + τ5

βk + τ5
≥

βk

β2
, k = 0, 1, (24)

using the fact that β2 > βk, k = 0, 1.

7



Similarly, the relative importance of the stencil S2 containing the discontinuity in the new convex
combination is also increased, since:

ωZ

2

ωZ

k

=
d2

dk

βZ

k

βZ

2

≥
ω2

ωk

, k = 0, 1, (25)

Let us now compare the sizes of the weights ωk for the classical WENO-JS, WENO-M and the new
WENO-Z schemes at the first step of the numerical solution of the wave equation ut = ux, with periodic
initial condition given by (19).

x
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(a) WENO-JS (b) WENO-M (c) WENO-Z

Figure 3: The distribution of the ideal weights dk and the weights ωk, k = 0, 1, 2 for (a) WENO-JS, (b)
WENO-M and (c) WENO-Z schemes at the first step of the numerical solution of the wave equation ut = ux,
with periodic initial condition given by (19). The ideal weights dk, k = 0, 1, 2 are shown with line styles and
the weights ωk, k = 0, 1, 2 are shown with symbols. The vertical axes are shown in log10 scale.

Figures 3(a)-(c) show the weights ωk, for the WENO-JS, WENO-M and WENO-Z schemes plotted
together with the ideal weights dk,where the vertical axis is in log10 scale. Away from the discontinuity, at
x = 0, the weights ωk (symbols) for all schemes correctly match the corresponding ideal weights dk (lines).
The first location where the five-points stencil S5 encounter the discontinuity is at x = −0.01. At this grid
point, the rightmost stencil S2 has its weight ω2 decreased to a much smaller value than ω0 and ω1, while
these two are slightly increased to reflect their larger relevance at the reconstruction step. At x = −0.005,
the discontinuity is present at S1 and S2 and a small value is also assigned to ω1, yielding ω0 ≈ O(1). A
symnmetric scenario occurs at x = 0.005, where ω2 assumes the largest value. While this situation is general
for all schemes, the main difference is at the ratios between the weights for discontinuous and continuous
stencils, as discussed above. While WENO-JS sets very small values for the discontinuous stencils, around
10−8, and the mapping of WENO-M generates a small increase on these values, WENO-Z yields a more
substantial increase to 10−4.

Figure 4 shows the numerical solutions of the wave equation ut = ux at t = 8, for all three schemes, along
with the exact solution. Note that the numerical solution generated by WENO-Z is qualitatively similar to
the one generated by WENO-M, being slightly sharper at the discontinuity. It can also be observed that
both schemes show distinctly better results than the classical WENO-JS.

4 Numerical Experiments

In this section we compare the numerical performance of the new weno scheme, WENO-Z, with the classical
WENO-JS and its improved version WENO-M. We show at first that WENO-Z is indeed a fifth-order
scheme by showing its errors with a smooth scalar advection problem. We also compare its behavior in
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Figure 4: Numerical solutions of the linear wave equation with the discontinuous initial condition (19) at
t = 8 for all three schemes. The exact solution is shown with a solid line.

the advection of discontinuous functions with the other two schemes. Finally, the one dimensional Euler
equations are solved for the Mach 3 shock density wave interaction and the interactive blastwaves problems.

4.1 Linear advection problems

In this section, the new scheme, WENO-Z, is used to solve the linear transport equation with smooth and
discontinuous initials conditions. Table I shows the L1, L2 and L∞ errors, along with the respective orders
of convergence, when WENO-Z is applied to the numerical solution of the linear advection of the scalar
smooth function:

u(x, 0) = sin(2πx).

One can see that WENO-Z, with the new weights ωZ

k , achieves fifth-order convergence for smooth problems.

N L1 Error Order L2 Error Order L∞ Error Order
25 7.9e-1 6.2e-1 6.5e-1
50 3.5e-2 4.50 2.8e-2 4.49 2.8e-2 4.55
100 1.1e-3 4.98 8.8e-4 4.98 8.8e-4 4.98
200 3.5e-5 5.00 2.7e-5 5.00 2.7e-5 5.00
400 1.1e-6 5.00 8.6e-7 5.00 8.6e-7 5.00

Table I: The L1, L2 and L∞ errors of the linear wave equation, with a smooth initial condition, as computed
by the WENO-Z scheme with the new weights ωZ

k .

Next, WENO-Z is tested with the linear transport of discontinuous functions, in the case of an initial
condition consisting of a Gaussian, a triangle, a square-wave and a semi-ellipse, given by

u(x, 0) =























1
6 [G(x, β, z − δ) + 4G(x, β, z) + G(x, β, z + δ)] , x ∈ [−0.8,−0.6]
1 , x ∈ [−0.4,−0.2]
1 − |10(x − 0.1)| , x ∈ [0, 0.2]
1
6 [F (x, α, a − δ) + 4F (x, α, a) + F (x, α, a + δ)] , x ∈ [0.4, 0.6]
0 , otherwise

, (26)

G(x, β, z) = e−β(x−z)2 , (27)

F (x, α, a) =
√

max (1 − α2(x − a)2, 0) , (28)
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Figure 5: Numerical solution and absolute pointwise error of the advection equation with the discontinuous
initial condition (28) as computed by WENO-JS, WENO-M and WENO-Z with N = 200 at t = 8.
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Figure 6: Numerical solution and absolute pointwise error of the advection equation with the discontinuous
initial condition (28) as computed by WENO-JS, WENO-M and WENO-Z with N = 400 at t = 8.

10



where the constants are z = −0.7, δ = 0.005, β = log 2
36δ2 , a = 0.5 and α = 10.

Figures 5 and 6 show that WENO-Z behaves quantitatively and qualitatively equivalent to WENO-
M with regards to the improvements over WENO-JS, but WENO-Z still shows the best results of all three
schemes. Also, as indicated in the figures, the smaller dissipation of WENO-Z generates slightly better results
on the various corners and pikes of the solution. Note also that the theoretical deficiency of WENO-Z at the
critical points does not seem to influence the performance at the capturing of the several discontinuities of
the solution. This is expected since the mapping of WENO-M increases the order from 3 to 5 at the critical
points for smooth solutions only, while at the discontinuities, the overall global rate of convergence of the
WENO schemes is only first order.

4.2 The Euler equations

In this section we present numerical experiments with the system of Euler Equations for gas dynamics in
strong conservation form:

Qt + Fx = 0, (29)

where

Q = (ρ, ρu, E)T , F = (ρu, ρu2 + P, (E + P )u)T , (30)

and the equation of state is given by

P = (γ − 1)

(

E +
1

2
ρu2

)

, γ = 1.4. (31)

The ρ, u, P, E are the density, velocity, pressure and total energy respectively. Following [1], the hyperbolicity
of the Euler equations admits a complete set of right and left eigenvectors for the Jacobian of the system.
The eigenvalues and eigenvectors are obtained via the linearized Riemann solver of Roe [4] and the first
order Lax-Friedrichs flux is used as the low order building block for the high order reconstruction step
of WENO (see equation (2.5) in [1]). After projecting the fluxes on the characteristic fields via the left
eigenvectors, the high order WENO reconstruction step is applied to obtain the high order approximation
at the cell boundaries, which are projected back into physical space via the right eigenvectors. The resulting
system of ODEs is advanced in time using the third order Total Variation Diminishing Runge-Kutta scheme
(RK-TVD). See [1] for further details of the algorithm.

4.2.1 Shock-density wave interaction

Consider the one dimensional Mach 3 shock-entropy wave interaction [5], specified by the following initial
conditions:

(ρ, u, P ) =

{

( 3.857143, 2.629369, 10.33333 ) −5 ≤ x < −4
( 1 + 0.2 sin(kx), 0, 1 ) −4 ≤ x ≤ 5

, (32)

where x ∈ [−5, 5] and k = 5. The solution of this problem consists of a number of shocklets and fine scales
structures which are located behind a right-going main shock.

Figure 7(a)-(b) provides a comparison for all schemes at t = 1.8 with an increasing number of points.
We shall refer to the solution computed by the WENO-M scheme with N = 2000 points as the ”exact”
solution. At a low resolution, N = 200, as shown in Fig. 7(a), WENO-M and WENO-Z capture much more
features of the solution than WENO-JS, particularly at the high frequency waves behind the shock, with
WENO-Z achieving deeper valleys and higher pikes than WENO-M. Increasing the resolution to N = 300,
as shown in Fig. 7(b), we see that convergence of WENO-M and WENO-Z is faster than WENO-JS.

At Fig. 8, the wave number k is increased to 10, yielding rougher numerical approximations at the sine
wave density field perturbation. The same observation can be made similar to one made in the previous
k = 5 case, where the improvement of the more accurate schemes WENO-M and WENO-Z over the classical
WENO-JS is more distinct.
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Figure 7: Solution of the Mach 3 shock density wave interaction with k = 5 as computed by WENO-JS,
WENO-M and WENO-Z schemes with (a) N = 200, (b) N = 300 points. The ”exact” solution is computed
by the WENO-M scheme with N = 2000 points.

x

R
h

o

-4 -2 0 2 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5
WENO-JS
WENO-M
WENO-Z
"Exact"

Figure 8: Solution of the Mach 3 shock density wave interaction with k = 10 computed by WENO-JS,
WENO-M and WENO-Z with N = 510 points. For clarity, only symbols at every fourth data point are
plotted. The ”exact” solution is computed by the WENO-M scheme with N = 2000 points.
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4.2.2 Interacting Blastwaves

The one dimensional Blast waves interaction problem by Woodward and Collela [7] has the following initial
configuration, with reflective boundary conditions:

(ρ, U, P ) =







( 1, 0, 1000 ) 0 ≤ x < 0.1
( 1, 0, 0.01 ) 0.1 ≤ x < 0.9
( 1, 0, 100 ) 0.9 ≤ x ≤ 1.0

. (33)

The initial pressure gradients generate two density shock waves that collide and interact later in time,
forming a profile as shown in Fig. 9 at t = 0.038. All three schemes converge, as the number of points
increase, to the reference solution computed by the WENO-M with N = 4000 points. As before, WENO-M
and WENO-Z show an improved convergence with respect to WENO-JS, due to their smaller dissipation.
Figure 10 presents a separate, and more detailed, comparison between WENO-M and WENO-Z, at two
different portions of the domain and different numbers of points. Careful examination of Fig. 10(a) shows
that WENO-Z obtains a sharper resolution of the shock near x = 0.65 and a higher pike near x = 0.78. In
Fig. 10(b), the high gradient structure at x = 0.86 is clearly better resolved with WENO-Z, as well as the
contact discontinuity near x = 0.8, with N = 800 points.
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Figure 9: Solution of the interactive blastwaves problem computed by WENO-JS, WENO-M and WENO-Z
with N = 400 points. For clarity, only symbols at every other data point are plotted. The ”exact” solution
is computed by the WENO-M scheme with N = 4000 points.

5 Conclusions

We have devised an improved version of the fifth order WENO scheme that makes use of higher order
information on the regularity of the solution already contained in the original framework of the classical
WENO scheme. A set of new smoothness indicators was devised, resulting in a less dissipative approximation
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Figure 10: Zoom in regions of the solution of the interactive blastwaves problem computed by WENO-M
and WENO-Z with N = 800 points. For clarity, only symbols at every other data point are plotted. The
”exact” solution is computed by the WENO-M scheme with N = 4000 points.

near discontinuities. To demonstrate this, we have compared the new WENO scheme with the classical
WENO scheme of Jiang and Shu and the mapped WENO scheme of Hendrick et al. in the one dimensional
solution of the Euler equations, in particular, the Mach 3 shock density wave interaction and the interactive
blastwaves problems. These results showed that the new WENO scheme substantially improves on the
classical WENO scheme, generating numerical solutions that are slightly better than the mapped WENO.
The WENO scheme proposed in this article is a simple and natural improvement on the classical smoothness
indicators with no additional computational cost. Nevertheless, it inherits the same theoretical deficiency
of the classical WENO at critical points, no relevant influence at problems with shocks have been found.
Research is currently underway to extend the idea to higher order WENO reconstruction schemes and will
be reported on an upcoming paper.

6 Acknowledgements

The first and second authors have been supported by CNPq, grant 300315/98-8. The third author gratefully
acknowledges the support of this work by the DOE under contract number DE-FG02-98ER25346 and AFOSR
under contract number FA9550-05-1-0123, and would also like to thanks the Departamento de Matemática
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